Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS Pathog ; 17(1): e1009111, 2021 01.
Article in English | MEDLINE | ID: covidwho-1015956

ABSTRACT

Antiviral innate immune response to RNA virus infection is supported by Pattern-Recognition Receptors (PRR) including RIG-I-Like Receptors (RLR), which lead to type I interferons (IFNs) and IFN-stimulated genes (ISG) production. Upon sensing of viral RNA, the E3 ubiquitin ligase TNF Receptor-Associated Factor-3 (TRAF3) is recruited along with its substrate TANK-Binding Kinase (TBK1), to MAVS-containing subcellular compartments, including mitochondria, peroxisomes, and the mitochondria-associated endoplasmic reticulum membrane (MAM). However, the regulation of such events remains largely unresolved. Here, we identify TRK-Fused Gene (TFG), a protein involved in the transport of newly synthesized proteins to the endomembrane system via the Coat Protein complex II (COPII) transport vesicles, as a new TRAF3-interacting protein allowing the efficient recruitment of TRAF3 to MAVS and TBK1 following Sendai virus (SeV) infection. Using siRNA and shRNA approaches, we show that TFG is required for virus-induced TBK1 activation resulting in C-terminal IRF3 phosphorylation and dimerization. We further show that the ability of the TRAF3-TFG complex to engage mTOR following SeV infection allows TBK1 to phosphorylate mTOR on serine 2159, a post-translational modification shown to promote mTORC1 signaling. We demonstrate that the activation of mTORC1 signaling during SeV infection plays a positive role in the expression of Viperin, IRF7 and IFN-induced proteins with tetratricopeptide repeats (IFITs) proteins, and that depleting TFG resulted in a compromised antiviral state. Our study, therefore, identifies TFG as an essential component of the RLR-dependent type I IFN antiviral response.


Subject(s)
Antiviral Agents/metabolism , Immunity, Innate/immunology , Interferon Type I/metabolism , Proteins/metabolism , Rhabdoviridae Infections/immunology , Secretory Pathway , Vesiculovirus/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , HeLa Cells , Humans , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proteins/genetics , Rhabdoviridae Infections/metabolism , Rhabdoviridae Infections/virology , Signal Transduction , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Vesiculovirus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL